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Abstract: The specific rate of a chemical reaction taking place at an interface may be different from that of the analogous 
reaction in a homogeneous phase, because of geometric and energetic reasons. The geometric effects of the localization (on 
the surface of large particles) of one of the reactants in a bimolecular elementary reaction are analyzed by using collision, 
transition-state, and diffusion-control theories. The geometric effects of the reduction of dimensionality are shown to be a 
significant decrease of the specific rates. Explicit expressions for the rate reduction and the interfacial rate constants are presented. 

The rate of many chemical reactions is different when the 
reactions take place at an interface as compared to that of the 
analogous reactions in a homogeneous phase, at the same tem­
perature. If the rate increases, the acceleration of a desired 
reaction is exploited in a variety of heterogeneous catalytic pro­
cesses, many enzymatic reactions, micellar catalysis,2 membrane 
mimetic systems,3 etc. Naturally, the primary diagnosis for ca­
talysis is provided by the comparison of the specific rates k* and 
k, observed in the heterogeneous and homogeneous systems, under 
similar conditions, respectively. There can be several reasons for 
the change of the rate constant at an interface, which may broadly 
be classified as energetic, and "other" reasons. The first group 
involves the change of the potential energy surface of the reaction, 
which may also result in a reduction of the activation energy E1. 
The other group encompasses changes in situations that are es­
sentially geometric in nature: the relative arrangement, acces­
sibility, and orientation of reactants and the dimensionality of space 
of their motion. 

The theoretical calculation of the activation energy is possible 
only for a few of the simplest, homogeneous, gas-phase reactions. 
Nevertheless, the geometric effects at interfaces can be analyzed 
on simple model systems, using basic theories. The reduction of 
dimensionality of diffusion at interfaces, for example, has been 
shown by Adam and Delbriick to significantly contribute to rate 
enhancement, under favorable circumstances.4 In fact, reduction 
of dimensionality seems to be nature's trick to overcome the barrier 
of diffusion control and make certain biochemical processes at 
low concentrations more efficient. In another study, Richter and 
Eigen investigated diffusion control for nonspherical geometry.5,6 

They analyzed the factors that influence the rate of reaction 
between a reactant and a specific site on the surface of a mac-
romolecule. They found that if surface diffusion on the surface 
of the macromolecule is sufficiently fast, the largest linear di­
mension of the macromolecule carrying the target site can become 
decisive for the overall diffusion-controlled rate constant.5,6 

In the present paper we shall investigate another geometric 
effect which is caused by the localization of one of the reactants 
of a bimolecular elementary reaction on a neutral surface with 
various geometries. The localization can be achieved by adsorption 
or chemical binding onto the surface of suspended particles. The 
analysis will be based on the collision, transition-state, and dif­
fusion-control theories of reaction rates. Explicit expressions will 
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be presented for the relative values of the rate constants on the 
surface and in homogeneous solution k*[/kf. If the activation 
energies in the heterogeneous and homogeneous cases are the same, 
and if the possibility of surface diffusion is excluded, the reaction 
at the interface will be shown to be always slower than the 
analogous homogeneous reaction. Thus, the primary geometric 
effect of the reduction of dimensionality is a decrease of the specific 
rate. 

The motivation for the study was provided by the apparent 
discrepancies found between the observed and expected diffu­
sion-controlled rate constants of reactions such as proton transfer 
and ion-pair formation occurring at the surface of colloidally 
dispersed spherical metal oxide particles.7"11 The analysis of the 
experimental findings in view of the theories developed in the 
present article will be presented in a forthcoming paper.12 The 
conclusions reached in this paper are helpful not only for the 
correct classification of diffusion-controlled interfacial rates but 
also for the understanding of the functioning of immobilized 
enzyme,13 chromatographic, ion-exchange, and solar energy 
conversion14 processes. 

Discussion 

Let us consider the elementary reaction 

A + B — ^ C (1) 

taking place in a homogeneous liquid or gas phase. If B is localized 
(e.g., by adsorption at a solid-liquid or solid-gas interface), the 
corresponding heterogeneous reaction can be written as 

A + Bs - ^ - C. (2) 

where Bs represents the reactive surface site and Cs the reacted 
surface moiety, i.e., the surface-bound product. We wish to 
compare the forward rate constants ks and k*f of the homogeneous 
and the heterogeneous reactions, respectively, focusing our at­
tention solely on the effect of localization of B at the interface. 
Although most of the general ideas that will be used are also valid 
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Figure 1. Schematic representation of the localization ot Bs on tne 
surface of large hard spheres. 

for solid-gas, gas-liquid (aerosols and bubbles), liquid-liquid (as 
in micellar systems), and solid-liquid interfaces, for simplicity, 
we shall focus our attention on the last. For the solvent we shall 
assume it to be an isotropic continuum. 

The rate of homogeneous reaction 1 is typically given in the 
form 

-dcA /dr = kfCAcB (3) 

and the rate constants by the Arrhenius equation 

k = x exp(-£ a /RT) (4) 

where x is the preexponential factor into which frequency and 
steric factors are incorporated.15 The other symbols have their 
customary meanings. Implicit in the formulation of (3) is the 
assumption that the concentrations c, are uniform throughout the 
system at all times during the reaction. This assumption is quite 
valid so long as the activation energy £ a is appreciable, causing 
the reaction to be sufficiently slower than diffusion. If this is the 
case, collision and transition-state theories can be used for the 
comparison of k{ and k*f. If, on the other hand, E3 is very small, 
A will be consumed by B (and vice versa) faster than it can be 
replenished by diffusion, resulting in an average concentration 
gradient of the reactants around each other. In this case diffu-
sional transport becomes rate limiting, and thus diffusion-control 
theories will be used for the analysis. 

Physical Model. For the comparison of the forward specific 
rates of reactions 1 and 2, we shall first specify the homogeneous 
system. Then we shall alter the system in such a way that it 
corresponds to eq 2 and derive the theoretical expressions for the 
rate constant k*f. 

The homogeneous system of volume V (cm3) consists of mo-
lecularly dispersed NA A's and NB B's, hence the concentrations 
are C1 = N1/ V (molecules/cm3). The solution is sufficiently dilute 
that it can be considered ideal. 

The heterogeneous system is identical with the homogeneous 
one, except now all NB B molecules are packed as a continuous 
monolayer on the surface of neutral hard spheres (HS) of radius 
rHS. The transition from the homogeneous to the heterogeneous 
case emulates the adsorption (or binding) of B on the surface of 
monodispersed colloidal particles or (with a minor modification 
of the theoretical conclusions) the sudden aggregation of B to 
monodispersed colloidal particles, prior to reaction. As to the way 
of packing B on the surface of the hard spheres, instead of con­
sidering possible unique arrangements we only insist that the hard 
spheres be much larger than B or A, i.e., rHS » rB and rHS » 
rA, and that A be larger than any gap between the B's. The last 
requirement assures that any collision between A and the large 
particle represents a contact only between A and B. An easily 
tractable arrangement, for which the calculations will be presented, 
is shown in Figure 1. In this arrangement, the total area of the 
hard spheres equals the total target area presented by the B's for 
A 

^rHS
2Nm = (2rB)2NB (5) 

as the radius of the hard sphere is not increased significantly by 
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the presence of B's on the surface. With relationship 5 in mind, 
one of our primary objectives is to examine the dependence of k*t 

on the choice of rHS (and NHS). 
Rate of Reaction according to Collision Theory. For homo­

geneous reaction 1, simple collision theory provides the rate to 
be16 

~{dNA/dt) = NANBV'[(^kT/nABy/2aAB
2 exp{-EJk7)] 

(6) 

where <JAB
2 is the "effective" collision cross section, and nAB = 

W A W B / ( W A + W B ) i s t n e reduced mass of A and B. This theory 
assumes that the reactant molecules are distributed uniformly 
throughout the available volume at all times. If we assume that 
only very short range interaction exists between A and B (a 
minimum requirement for reaction), but otherwise they follow 
hard-sphere dynamics, then the 

*AB2 * ('A + 'B)2 (7) 

substitution can be made in (6). The quantity in brackets in (6) 
is of course the rate constant ks of reaction 1 in units of cm3 

molecule"1 s"1. The quantity &f/[exp(-.E\/kT)] is the collision 
constant that represents the limiting value of k{ in either case where 
£ a - * 0 or/and 7 — ». 

Now, for the heterogeneous system 2, as specified in the previous 
section including eq 5, the number of collisions between A and 
the hard spheres (covered with B's) is given by 

ZA-HS = NANmK\iTkT/»A-m)l'\rA + 'HS) 2 (8) 

where the reduced mass MA-HS °f A and HS is tiA-us ** wA since 
wHS » mA, and (rA + /1Hs)2 = ''HS2' With the use of eq 5 and 
8, for the rate of reaction 2 we find 

-dNA/dt = NANBV-'[(BkT/rmAy'W cxp(-E\/kT)] (9) 

where £*a is the activation energy of heterogeneous reaction 2, 
and the expression in brackets is k*f. Hence, from (6), (7), and 
(9), the ratio of the rates is found to be 

* V * f = 
"-'[WB/CWA + mB)]1'2[rB/(rA + rB)]2 txpi-AEJkT) (10) 

where A£a = £*a - £ a is the difference between the activation 
energies in the heterogeneous and homogeneous cases, respectively, 
which of course is usually not zero. The exponential term rep­
resents the energetic reason for the change of the specific rate 
upon reduction of dimensionality. The factors *-"' and [rB/(rA 

+ rB)]2 are expressions of the relative geometrical constraints on 
the heterogeneous system, i.e., that with respect to a single B on 
the surface, the A-B collisions are restricted from virtually all 
other than frontal direction. Although the radius of A is quite 
irrelevant for the heterogeneous rate from eq 9, the ratio k*f/kt 

in (10) is clearly a function of the relative values of rA and rB. 
The factor [mB/(mA + mB)]ll2 arises from the localization of B 
on the hard sphere whose average speed is much smaller than that 
of B in the homogeneous case. Clearly, all but the exponential 
factor are smaller than unity, indicating that the geometrical 
contributions to the specific rate upon reduction of dimensionality 
are negative. In fact, for reasonable molecular parameters (where 
the sizes and masses of A and B are similar), the activation energy 
of the surface reaction needs to be lower than that of the corre­
sponding homogeneous reaction by 2.5 to 7.5 kJ/mol, just to 
compensate for the rate reduction cuased by steric and mobility 
factors. Disregarding the activation energy term, simple con­
siderations result in a maximum 50-fold estimated decrease of 
rate by the geometric factors upon reduction of dimensionality. 
Interestingly, collision theory predicts no explicit rate dependence 
on the radius of the hard spheres on which B's are localized (see 
eq 9 and 10). 

If the closest hexagonal packing is used, more B can be loaded 
on the surface of the hard spheres than in the arrangement of 

(15) Moore, J. W.; Pearson, R. G. "Kinetics and Mechanism"; 3rd ed.; 
Wiley: New York, 1981. 
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Liquids"; Methuen: London, 1964. 



306 J. Am. Chem. Soc, Vol. 106, No. 2, 1984 Astumian and Schelly 

Figure 1. In this case either less hard spheres of the original size 
or the original number with smaller rHS are needed to accom­
modate all the B's. In any event, the collision number ZA .H S in 
(8) becomes smaller, increasing the geometric rate reduction effect 
of the localization of B's. 

If incomplete coverage of the hard spheres is permitted (where 
only a fraction a < 1 of their surface is randomly occupied by 
B's) by increasing rHS at fixed iVHS, the relative rate will be 
unchanged and given by eq 10. 

Rate of Reaction according to Transition-State Theory. 
Transition-state theory17 assumes the formation of an activated 
complex X* during the course of the reaction along the reaction 
coordinate, and thus the forward reactions in homogeneous re­
action 1 and heterogeneous reaction 2, close to equilibrium, can 
be written as 

and 

A + B ^ X * 

A + B5 ^ X * Cs 

(H) 

(12) 

respectively. Xs* represents the activated complex in the surface 
reaction. 

In the homogeneous case, Eyring provides the expression for 
the rate constant as 

kt = K 
kTjj_ 
h FAFB 

exp(-E0/kT) (13) 

where K is the transmission coefficient (usually K « 1), the Fs 
are the molecular partition functions of the various species, and 
the other symbols have their usual meanings. E0 is the difference 
between the zero-point energy of the activated complex and that 
of the reactants, i.e., the hypothetical energy of activation at 0 
K. The partition functions F can be factorized into contributions 
corresponding to translational, rotational, vibrational, and elec­
tronic energy: 

F - /tr/rot(U /vibjl/el (14) 

where the vibrational partition function/^ for each normal mode 
j of vibration of a species is included. For moderate conditions, 
/e ] as 1. If B is immobilized on the surface of hard spheres, the 
values of the partition functions/of B and X* change, lowering 
the rate constant of reaction 12 as compared to that of reaction 
11. Several authors have previously derived rate equations for 
bimolecular reactions occurring at surfaces using transition-state 
theory.17"19 AU of these treatments, however, were dealing with 
mechanisms of the Langmuir-Hinshelwood type, which involves 
the adsorption of both reactants onto the surface at adjacent sites 
followed by subsequent reaction: 

A8 + B8 — C8 (15) 

The mechanism of our interest (eq 2 and 12) is referred to as the 
Langmuir-Rideal mechanism18 that seems to be less common than 
the Langmuir-Hinshelwood type in heterogeneous catalytic 
processes. 

Our reaction in (2) and (12) is formally identical with ad­
sorption of A to discrete surface sites, the rate of which has been 
treated previously.20 We shall augment the arguments used and 
recast the result in a form amenable to facile comparison with 
expression 13 for the analogous homogeneous reaction in (1) and 
(11). 

(17) Glasstone, S.; Laidler, K. J.; Eyring, H. "The Theory of Rate 
Processes"; McGraw-Hill: New York, 1941. 
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659-666. 

Clearly, the actual expression for the rate constant k( in (13) 
depends on the chemical structure of the reactants. We shall look 
at the simplest case only, where both A and B are atoms but where 
the geometric effect of the reduction of dimensionality already 
becomes apparent. In this case, A and B have only a translational 
degree of freedom and the diatomic activated complex has both 
translational and rotational degrees of freedom (the decomposition 
vibration is factored out). If we approximate the A-B bond length 
in X$ by (rA + rB), the moment of inertia in the expression for 
/ r o M becomes 

I* = (/A + rB)2mAmB/(mA + wB) (16) 

and we find 

k, = K[SirkT(mA + mh)/mAm^l\rK + rB)2 exp(-E0/kT) 
(17) 

Except for K, the result is identical with that obtained by using 
the collision theory (cf. eq 6 and 7). Equation 17 can also be 
written as 

kTflr,* /rot,* 
*' = "T" 7—7~ exp(-E0AD 

" /tr,A J tr.B 

(18) 

The rate constant for the surface reaction can easily be obtained 
from (18) by accounting for the changes in the partition functions 
caused by the localization of B on the hard sphere, which leads 
to the following substitution: 

JtT,* ^ / t r . H S /rot,* ^ /rot.HS /tr,B, ~ .Ar1HS (19) 

since the presence of B's and X"s on the hard sphere represents 
a negligible perturbation on its mass and size. Although Bs and 
X8* each have an additional vibrational degree of freedom, the 
corresponding partition functions / , ^ and / v i b , are unity at 
moderate temperatures. Hence, with the substitutions in (19), 
the heterogeneous rate constant becomes 

** ,= 
kT /tr,Hs/rot,HS 

" /tr,A/tr,Hs/rot,Hs 
cxp{-E*0/kT) 

kT 
/tr,A-' exp(-E*Q/kT) 

(20) 

(21) 

The rotational partition function of B5 

/rot.B, ^ / ro t .HS ( 2 2 ) 

in the denominator in eq 20 must be included, because B attached 
to the surface also has a rotational degree of freedom in contrast 
to the homogeneous case. However, due to the large size and mass 
of the hard sphere to which they are attached, B5 and X*s became 
very similar in their mobilities. This leads to the approximations 
in eq 19 and 22 and the cancellations in eq 20. 

The ratio k*f/kf is obtained from (18) and (21) as 

* V * f = (<<*A)</tr,B//<r,*/r°t,.) e x P ( - A £ 0 / k T ) (23) 

where AB0
 = Eo ~ F*o is the difference of the activation energies 

in the homogeneous and heterogeneous cases. The exponential 
factor together with the ratio of the transmission coefficients (K*/K) 
represent the energetic effects, and the factor involving the par­
tition functions the geometric effect of the reduction of dimen­
sionality. The major effect of the localization of B is that both 
B and X* assume the mobility of the bulky hard sphere, which 
makes them and their translational and rotational partition 
functions very similar. These lead, in the framework of transi­
tion-state theory, to a significant lowering of the rate. With use 
of typical numerical values for the partition functins in (23), the 
geometric effect represents an estimated 10- to 100-fold decrease 
of the specific rate. Just to make up for this rate loss, the activation 
energy of the heterogeneous reaction needs to be about 10 kJ/mol 
lower than that of the analogous homogeneous reaction. 

For more complicated reactions, e.g., where A is a diatomic 
molecule and X, is a nonlinear triatomic species, the geometric 
rate reduction can be as large as 103-fold. 
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The Rate of Reaction according to Diffusion-Control Theory. 
In many fast reactions in solution, where the intrinsic rate of 
reaction is higher than that of diffusive transport, the random 
spatial distribution of A and B is not maintained during reaction 
and an average concentration gradient of the reaction partner 
arises around each molecule. A rigorous probabilistic treatment 
for the emergence of the gradient was given by Collins and 
Kimball.21 In such a case of course the diffusion of A toward 
B (assumed to be fixed in space, at this point) becomes rate 
limiting, and in the absence of long-range interaction between the 
reactants Fick's first 

* = -ADA dcjdr 

and second laws 

dcA/dt = DA(d2cA/dr2 + 2dcA/rdr) 

(24) 

(25) 

written for spherical symmetry around the center of B can be used 
as the basis for the derivation of expressions for diffusion-limited 
rates. Many authors22"26 have done so, using a number of different 
boundary and initial conditions. 

With use of the steady-state approximation dcA/dt = 0 and 
realizing that then the average net flow $ of A entering per­
pendicularly through any spherical surface (of area A) concentric 
with B is constant (the exact boundary condition corresponding 
to this is the so-called radiation-boundary condition),21 cAR can 
be calculated from (24) and (25) as 

CA.R = cA>. - i/^DR (26) 

where the simultaneous diffusion of both reactants is taken care 
of by introducing their relative diffusion coefficient D - DA + 
DB. R in (26) is the "reaction radius" = rA + rB, and cAi„ = l inv^ 
cA,r represents the analytical bulk concentration of A. Since the 
rate of reaction between A and B is 

rate = kfCXRcBiC (27) 

Noyes23 obtained the expression for the effective rate constants 
fcfeff in the steady state as 

Kf.e 
*r ATTRD 

1 + 
* f 

4vRD 
1 + 

A-wRD 
(28) 

T 

This is essentially the Smoluchowski equation22 without the 
time-dependent term, which is negligible after about 10~7 s. Later, 
Debye27 included the effect of electrostatic potential acting between 
the reactants, and Eigen28 also derived an equation for diffu­
sion-controlled dissociation-rate constants. 

For our present analysis, we shall concentrate on the simple 
case when kf » 4irRD in (28), then the diffusion-controlled 
specific rate simplifies to 

Hcff ~4irRD (29) 

This corresponds to B essentially being a sink for A, i.e., cA R = 
0. With the use of the Stokes-Einstein relation for the diffusion 
coefficient 

Dj = kT/ 67Tr1Tj (30) 

(21) Collins, F. C; Kimball, G. E. J. Colloid Sci. 1949, 4, 425-437. 
(22) Smoluchowski, M. V. Ann. Phys. (Leipzig) 1915, 48, 1103; Z. Phys. 

Chem., 1917,92, 129. 
(23) Noyes, R. M. Prog. React. Kinet. 1961, 1, 129-160 and references 

therein. 
(24) Naqvi, R. K.; Waldenstrom, S.; Mork, K. J. / . Phys. Chem. 1982, 

86, 4750-4756. 
(25) Mysels, K. J. J. Phys. Chem. 1982, 86, 4648-4651. 
(26) Reck, R. A.; Prager, S. J. Chem. Phys. 1965, 42, 3027-32. 
(27) Debye, P. Electrochem. Soc. Trans. 1942, 82, 265-271. 
(28) Eigen, M. Z. Phys. Chem. {Leipzig) N.F. 1954, 1, 176-200. 

(where r\ is the viscosity of the medium) and substituting the 
difinitions of R and D into (29), we obtain for the diffusion-
controlled rate constant in homogeneous solution 

IcT 2 kT (rA + '"B)2 

*wr = 4*(rA + ' B ) ^ A - 1 + 'B"1) = i — — (3D 
67TT; 3 rj rArB 

In the heterogeneous case, where B's are localized on hard 
spheres, the "sink property" of B is transferred to the large particles 
and fc*feff can immediately be obtained from (31) 

f.eff 

2 kT (rA + ^Hs)2 

3 v rArHS 

(32) 

To elucidate the geometric effect of reduction of dimensionality, 
however, now we have to enforce the conditions specified for the 
physical model. With eq 31 and 32 the forward rates of reactions 
1 and 2 are 

and 

-dcA /dr 

[ 2kT(rA + ;-B)2 "I 

MrArB J 

= J" 2kT(rA + rHS)
2 I 

[_ 3r;rArHS J 

cA,~NB/V (33) 

CA..NHS/V (34) 

respectively. By invoking condition 5 and if, as previously, rHS 

» rA, the heterogeneous rate in (34) becomes 

-dcA/d? [ 2kT rB1 1 
3 Ir?? rArHS J 

cA,~NB/V (35) 

Notice that the inverse relationship between rHS and the rate in 
(35) is not simply an expression of obtaining larger surface area 
by using smaller hard spheres, since the total surface area is fixed 
by rB and NB according to condition 5. The result rather is due 
to the lowering of the number and thus the concentration of the 
hard sphere sinks with increasing rHS. 

The factors in brackets on the right side of eq 35 and 33 
represent the actual diffusion-controlled heterogeneous k*f and 
homogeneous k'{ specific rates, respectively, which are to be 
compared. The ratio of the rates 

* V * f = ' B V T ' W ' A + ' B ) 2 (36) 

is clearly much smaller than one. With use of typical atomic radii 
for rA and rB and colloidal size (rHS = 1 fim) for the large particle, 
the ratio is about 10"5. Obviously, the decrease of rate caused 
by the geometric effects of reduction of dimensionality is more 
pronounced for diffusion-controlled than for slow reactions. Of 
course, the effect is strongly dependent on rHS. In fact, in the 
limiting case when all B's are packed on a single large hard sphere, 
its radius according to eq 5 must be 

'HS = rB(NB/irV2 (37) 

and the heterogeneous rate in (34) becomes 

IkT fR 
-dcA /dr ~ — — - c A , J V 8 ' / 2 / V (38) 

3r;7rl/z rA 

by realizing that rA « NBI2 during the derivation. Interestingly, 
the low-end limiting heterogeneous rate is proportional to the 
square root of iVB. The ratio of the heterogeneous and homo­
geneous rates in this case, 

2 

(39) 
V 

*"\rA + rB)2 NB 
/2 

is obviously a very small number. 
It is also illustrative to investigate the relative "sink strength" 

of a hard sphere covered with B and that of a B in the homo­
geneous solution, in terms of the corresponding net flow of A. 
Using eq 26, and by enforcing the same boundary conditions in 
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(40) 

the homogeneous and heterogeneous cases, we find 

** _ 4fl-Z)*J?*(cAi. - cAiR.) ^ rHS^B 

* " 4irDR(cA:„ - cAiR) ~ (rA + rB)2 

since cAR = cA R . = 0 and rHS » rA, rB. Clearly, a hard sphere 
covered with B represents a more effective sink that an individual 
B, in spite of the much smaller diffusion coefficient of the large 
particle. Nevertheless, as rHS is increased, the hard-sphere con­
centration decreases faster (by 1 /rHS

2, from eq 5) than the sink 
strength increases, leading to the net rate reduction given in (36). 

A straightforward extension of the ideas pursued would be to 
investigate the effect of rHS -* °°, i.e., the localization of B's on 
a flat surface. In this case, however, one deals with the problem 
of one-dimensional diffusion described by Fick's laws in Cartesian 
coordinates, where no steady state is possible for finite bulk 
concentration ca>0O and time. This is of course expected, since 
setting dcA/dt = 0 implies dcA/dx = constant, which is possible 
only for ca,„ — °° or dcA/dx = 0. The first case is physically not 
feasible, and the latter one applies only for slow reactions. Thus 
no direct comparison can be made. 

Summary 
The primary, geometric effect of localizing one of the reactants 

on the surface of large particles (hard spheres) in a bimolecular 
elementary reaction is the decrease of the rate. We normalized 
the conditions such that the homogeneous and the interfacial rates 
could directly be compared by using collision and transition-state 
theories for the slow and diffusion-control theory for the fast 
reactions. The essence of the normalization is that the bulk 
concentration of the reactants is kept constant in the transition 
from the homogeneous to the heterogeneous case, and the con­
centrations of the interfacial species are described in the normal 
bulk number-density units, since the hard spheres are randomly 
distributed over the space available. In the heterogeneous case, 
the B molecules and the activated complex X* bound to the surface 

lose a major fraction of their degrees of freedom and assume the 
mobilities of the bulky hard sphere. If the hard spheres were 
randomly distributed but fixed in space (as in a chromatography 
or ion-exchange packing), the decrease of the specific rate would 
be even greater than found in our treatment. In spite of the high 
local concentrations caused by the clustering of B on the hard 
spheres, the associated negative geometric effects of the reduction 
of dimensionality are dominant, leading to a significant rate re­
duction, especially for diffusion-controlled reactions. Consequently, 
reactions taking place on the surface of colloidal particles and 
having a Langmuir-Rideal type mechanism with a rate constant 
of as small as 105-104 M"1 s may be classified as diffusion con­
trolled. For such a system, the upper limit of the diffusion-con­
trolled rate constant in the usual units can be estimated from 

k = 
2kTL 'B 

37TJjIOOO / V H S 
(M"1 s) (41) 

which follows from eq 35, and where L is Avogadro's number. 
For "reaction-controlled" rates, the geometric rate reduction 

is independent of the size of the hard spheres, according to the 
collision (eq 10) and the transition-state (eq 23) theories. For 
diffusion-controlled reactions, however, the size of the rate re­
duction increases with rHS (eq 36). 

For slow reactions, it is important to realize that for successful 
Langmuir-Rideal-type heterogeneous catalitic acceleration, the 
interfacial reaction needs to have an activation energy at least 
10 kJ/mol lower than that of the homogeneous reaction just in 
order to compensate for the geometric rate reduction, in the 
absence of surface diffusion. 
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Abstract: With use of ab initio electronic structure theory, activation energies and transition-state geometries have been found 
for the exchange of the title transition-metal hydrides with D2. These calculations indicate that such concerted, suprafacial 
[2 + 2] reactions proceed at low energy if the M-H bond is nonpolar and covalent, and if this bond uses mostly valence d-orbital 
character on the metal. 

The Woodward-Hoffmann orbital symmetry rules have had 
a profound effect on the understanding of organic reactions,1 but 
attemps to generalize these rules to organic reactions mediated 
by transition metals have not led to specific results of comparable 
utility.2 It is generally assumed that there are no particular 
reactions that are symmetry forbidden for transition-metal systems. 
For example, [2S + 2S] reactions such as migratory insertion 
pervade organometallic chemistry,3 whereas analogous reactions 
are known to be forbidden in strictly organic systems. Our belief 
(vide infra) is that the detailed nature of the metal-hydrogen and 

(1) Woodward, R. B.; Hoffmann, R. "The Conservation of Orbital 
Symmetry"; Academic Press: New York, 1970. 

(2) Mango, F. D.; Schachtschneider, J. H. J. Am. Chem. Soc, 1971, 93, 
1123-1130; Pearson, R. G. Chem. Brit., 1976, 12, 160. 

(3) See, for example: Collman, J. P.; Hegedus, L. S. "Principles and 
Applications of Organotransition Metal Chemistry"; University Science Books: 
Mill Valley, Ca, 1980. 
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M = (O)CI2Tu(WCI2Ti, (C)CI2Sc 

metal-carbon covalent bond is critical to the process of these now 
allowed reactions. An appreciation of the transition-metal-ligand 
covalent bond is now emerging4 that allows us to go beyond the 
simple standards of allowed and forbidden and to begin predicting 

(4) Rappe', A. K.; Goddard, W. A., Ill, J. Am. Chem. Soc, 1982, 104, 
297-299, 448-456, 3287-3294. 
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